博碩士論文 etd-0821109-185112 詳細資訊


論文電子檔
  • 9671025.pdf
  • 本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
    請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
    電子檔上網權限 校內10年後、校外永不公開
    統計 本論文已被瀏覽 1359 次,被下載 0 次
    中文姓名 何浩瑋
    英文姓名 Hao-Wei Ho
    電子信箱 tank_howard@hotmail.com
    系所名稱(中) 化學工程研究所
    系所名稱(英) Chemical Engineering
    學年度 97
    學期 2
    學位(中) 碩士
    學位(英) Master
    論文種類 碩士論文
    論文語文別 中文
    論文名稱(中) 利用液-固多階式流體化床去除海砂中的鹽分
    論文名稱(英) An experimental study on the desalination of sea sand using a liquid-solid multistage fluidized bed
    頁數 81
    論文目次 中文摘要........................................................................................................I
    英文摘要...................................................................................................... II
    誌謝............................................................................................................. III
    目錄............................................................................................................. IV
    圖目錄.........................................................................................................VI
    表目錄......................................................................................................... IX
    第1章 緒論................................................................................................. 1
    第2章 文獻回顧......................................................................................... 2
    2-1 流體化技術發展歷史................................................................... 2
    2-2 液固流體化床............................................................................... 5
    2-3 流體化浸取與洗滌....................................................................... 6
    2-4 圓錐形流體化床........................................................................... 8
    2-5 多階式流體化床......................................................................... 10
    2-6 海砂除鹽技術之發展................................................................. 17
    第3章 實驗裝置與操作方法................................................................... 27
    3-1 實驗材料與裝置......................................................................... 27
    3-1-1 床質.................................................................................. 27
    3-1-2 流體.................................................................................. 29
    3-1-3 實驗裝置簡介.................................................................. 29
    3-1-4 實驗裝置與所用儀器之細部說明.................................. 31
    3-2 實驗方法與步驟......................................................................... 38
    3-2-1 等溫平衡曲線.................................................................. 38
    3-2-2 單、多階流體化床操作.................................................. 39
    3-2-3 除鹽方法.......................................................................... 42
    第4章 實驗結果與討論........................................................................... 43
    4-1 海砂粒子特性............................................................................. 43
    4-1-1 含水率.............................................................................. 43
    4-1-2 含鹽量.............................................................................. 44
    4-1-3 最小流體化速度.............................................................. 45
    4-2 平衡等溫曲線............................................................................. 46
    4-3 逆流式多階流體化床................................................................. 47
    4-3-1 掃流流體化床之形成機制.............................................. 47
    4-3-2 穩定操作條件與及範圍.................................................. 50
    4-4 除鹽實驗..................................................................................... 54
    4-4-1 操作變數對海砂含鹽濃度之影響.................................. 55
    第5章 結論與建議................................................................................... 62
    符號說明..................................................................................................... 63
    參考文獻..................................................................................................... 64
    附錄............................................................................................................. 69
    附錄A 流量計校正曲線........................................................................... 69
    附錄B 震動式進料器進料曲線............................................................... 70
    附錄C 皮帶進料器進料曲線................................................................... 71
    作者自述..................................................................................................... 72
    圖目錄
    Fig. 2-1 The cover of “De Re Metallica” (流態化手冊, 2008) ............ 2
    Fig. 2-2 Mineral separation by hand jigging (流態化手冊, 2008)....... 3
    Fig. 2-3 The Winkler gas generator in early periods (流態化手冊,
    2008).............................................................................................. 4
    Fig. 2-4 The Winkler gas generator in industry (流態化手冊, 2008) .. 4
    Fig. 2-5 The principle of leaching and washing in fluidized bed (流態
    化手冊, 2008) ............................................................................... 6
    Fig. 2-6 The angle  of tapered fluidized bed (Maruyama, 1984) ........ 8
    Fig. 2-7 Types of multistage fluidized beds (Varma, 1975)................ 10
    Fig. 2-8 The gas-solid counter-current multistage fluidized bed (流態
    化手冊, 2008) ............................................................................. 11
    Fig. 2-9 The gas-solid co-current multistage fluidized bed (流態化手
    冊, 2008)...................................................................................... 12
    Fig. 2-10 The gas-solid cross-current multistage fluidized bed (流態化
    手冊, 2008) ................................................................................. 13
    Fig. 2-11 Two types of multistage fluidized beds (朱曉萍, 2003) ..... 14
    Fig. 2-12 Schematic diagram of multistage fluidized bed column for
    ion exchanger (Singh A. et al., 2008).......................................... 16
    Fig. 2-13 The relationship between the concentration in sea sand and
    the water content in sea sand (蕭幸國, 1992)............................. 19
    Fig. 2-14 The equipment of the sea sand desalination by soaking
    method (王天送, 1996) ............................................................... 20
    Fig. 2-15 Schematic diagram of the sea sand desalination by soaking
    (王天送, 1996) ............................................................................ 21
    Fig. 2-16 The equipment and process of the sea sand desalination by
    the method of spraying and stacking (王天送, 1996)................. 21
    Fig. 2-17 Schematic diagram of the sea sand desalination by the
    method spraying combine with stacking (王天送, 1996)........... 22
    Fig. 2-18 The field disposed of the sea sand desalination by stacking
    (王天送, 1996) ............................................................................ 22
    Fig. 2-19 Schematic diagram of the sea sand desalination by stacking
    (王天送, 1996) ............................................................................ 23
    Fig. 3-1 Particle distribution by cumulative analysis ......................... 27
    Fig. 3-2 Particle distribution by differential analysis.......................... 28
    Fig. 3-3 Schematic diagram of experimental apparatus ..................... 30
    Fig. 3-4 The reservoir and float switch............................................... 31
    Fig. 3-5 Flow-controlled pump ........................................................... 31
    Fig. 3-6 Ball valve............................................................................... 32
    Fig. 3-7 Rotameter .............................................................................. 32
    Fig. 3-8 Porous plate for distributer .................................................... 33
    Fig. 3-9 Glass beads in the calming section for distribution .............. 33
    Fig. 3-10 Schematic diagram of experimental apparatus ................... 34
    Fig. 3-11 Vibrating feeder ................................................................... 35
    Fig. 3-12 Belt feeder ........................................................................... 35
    Fig. 3-13 Sampling filter ..................................................................... 36
    Fig. 3-14 Salt meter............................................................................. 36
    Fig. 3-15 Ion chromatography ............................................................ 37
    Fig. 4-1 The pressure drop vs. water velocity in column.................... 45
    Fig. 4-2 Equilibrium isotherm of salt concentration in sea sand ........ 46
    Fig. 4-3 Schematic of cross-flow fluidization in experiment ............. 48
    Fig. 4-4 Schematic of cross-flow fluidization..................................... 49
    Fig. 4-5 The position of water flow .................................................... 50
    Fig. 4-6 The water flow rate in different condition (Ql1 vs. Ql2) ........ 51
    Fig. 4-7 The water flow rate in different condition (Ql1 vs. Ql3) ........ 51
    Fig. 4-8 Stable operating region of solid and water flow rates in
    multistage column (D=100mm,N=2,Dd=10mm) .................. 52
    Fig. 4-9 Stable operating reigion of solid and water flow rates in
    multistage column (D=100mm,N=3,Dd=10mm) .................. 53
    Fig. 4-10 The result of desalination in multistage fluidized bed (Ql=7
    L/min,Qs=1000 g/min,N=2) .................................................. 55
    Fig. 4-11 The result of desalination in multistage fluidized bed (Ql=7
    L/min,Qs=2520 g/min,N=2) .................................................. 56
    Fig. 4-12 The result of desalination in multistage fluidized bed (Ql=7
    L/min,Qs=3390 g/min,N=2) .................................................. 57
    Fig. 4-13 The result of desalination in multistage fluidized bed (Ql=8
    L/min,Qs=1680 g/min,N=3) .................................................. 58
    Fig. 4-14 The result of desalination in multistage fluidized bed (Ql=8
    L/min,Qs=2520 g/min,N=3) .................................................. 59
    Fig. 4-15 The result of desalination in multistage fluidized bed (Ql=8
    L/min,Qs=3390 g/min,N=3) .................................................. 60
    Fig. 4-16 The result of desalination in multistage fluidized bed (Ql=8
    L/min,Qs=4200 g/min,N=3) .................................................. 61
    表目錄
    Table 2-1台灣地區海域砂石資源賦存調查表................................ 18
    Table 2-2各種海砂除鹽方法............................................................. 24
    Table 2-3 CNS 1240規範 (以細粒料的重量) .................................. 25
    Table 2-4各式海砂除鹽法整理......................................................... 26
    Table 3-1 Physical properties of solid particles (at 20℃)................... 28
    Table 3-2Physical properties of liquid (at 20℃)................................. 29
    Table 3-3 Details of the fluidized bed................................................. 34
    Table 4-1 The water content of sea sand............................................. 43
    Table 4-2 The salt concentration of sea sand ...................................... 44
    Table 4-3 The operation value in set I................................................. 55
    Table 4-4 The operation value in set II ............................................... 56
    Table 4-5 The operation value in set III .............................................. 57
    Table 4-6 The operation value in three stages in set I......................... 58
    Table 4-7 The operation value in three stages in set II ....................... 59
    Table 4-8 The operation value in three stages in set III ...................... 60
    Table 4-9 The operation value in three stages in set IV...................... 61
    參考文獻 Brown, L. C. and R. Klasen, ' Countercurrent Solid-Liquid Contactor,' US
    1983/ 4416859 (1983).
    Chen, A., J. R. Grace, N. Epstein and C. J. Lim, "Steady State Dispersion of
    Mono-Size, Binary and Multi-Size Particles in a Liquid Fluidized Bed Classifier,"
    Chemical Engineering Science 57, 991-1002 (2002).
    DiFelice, R., 'Hydrodynamics of Liquid Fluidisation,' Chemical Engineering
    Science 50(8), 1213-1245 (1995).
    DiFelice, R., P. U. Foscolo, L. G. Gibilaro, G. B. Wallis and R. Carta, 'Expansion
    Characteristic of Tapered Fluidized Beds,' AIChE Journal 37(11), 1668-1672 (1991).
    Dodds, R. P. I. Hudson, L. Kershenbaum and M. Streat, 'The Operation and
    Modelling of a Periodic, Countercurrent, Solid-Liquid Reactor.' Chemical
    Engineering Science 28, 1233-1248 (1972).
    Epstein, N. 'Applications of Liquid-Solid Fluidization.' International Journal of
    Chemical 1(Review R1), (2003).
    Epstein, N. 'Teetering.' Powder Technology 151, 2-14 (2005).
    Grace, J. R., 'Agricola Aground: Characterization and Interpretation of
    Fluidization Phenomena,' AIChE Symposium Series (Fluidized Processes) 88(289),
    1-16 (1992).
    Hancock, R. T., "The Teeter Condition," Mining Magazine 55(9), 90-94 (1936).
    Jiang, F., M. Zou, X. Guan and C. Li, 'Application of Fluidization Technique to
    Uranium Hydrometallurgy-Washing of Alkaline-Leached Uranium Ore Slurry in
    Fluidized Bed,' Uranium Mining and Metallurgy 5(1), 30~37 (1986).
    Kannan, C. S., S. S. Rao and Y. B. G. Varma, 'A Study of Stable Range of
    Operation on Multistage Fluidised Beds,' Powder Technology 78, 203-211 (1994).
    Kishore, K. and N. Verma 'Mass Transfer Study on Counter Current Multi-Stage
    Fluidized Bed Ion Exchanger,' Chemical Engineering and Processing 45, 31-45
    (2006).
    Kolar, V., 'Fluidization of Solid Particle by Liquid in Conical Vessel,' Collection
    Czechoslov. Chem. Commun. 28, 1224-1230 (1963).
    Krishnaiah, K. and Y.B.G. Varma, 'Pressure Drop, Solids Concentration and
    Mean Holding Time in Multistage Fluidized Bed,' The Canadian Journal of Chemical
    Engineering 60, 346-352 (1982)
    Kwauk, M. 'Particulate Fluidization:An Overview,' Advances in Chemical
    Engineering 17, 207-360 (1992).
    Liu, T. F., A. S. Yan, Q. Sun, J. N. Jia, Y. Z. Liao and Z. J. Song, 'Experimental
    Study on Hydrodynamics of Multistage Fluidized Bed Column with a Draft Tube,'
    Chemical Engineering (China) 25(4),18-21 (2007).
    Lu, W. M., S. P. Ju, K. L. Tung and Y. C. Lu, ' Stable Analysis of Perforated
    Plate Type Single Stage Suspension Fluidized Bed Without Downcomer,' Korean J.
    Chem. Eng. 16(6), 810-817 (1999).
    Maruyama, T. and H. Sato, ' Liquid Fluidization in Conical Vessel,' The
    Chemical Engineering Journal 46, 15-21 (1991).
    Maruyama, T., H. Maeda and T. Mizushina, ' Liquid fluidization in tapered
    vessels.' Journal of Chemical Engineering of Japan 17(2), 132-139 (1984).
    Mukherjee, A. K. and B.K. Mishra, 'Experimental and Simulation Studies on the
    Role of Fluid Velocity During Particle Separation in a Liquid-Solid Fluidized Bed,'
    Int. J. Miner. Process. 82, 211-221 (2007).
    Nguyentranlam G. and K. P. Galvin, 'Application of the Reflux Classifier in
    Solid-Liquid Operation,' Int. J. Miner. Process. 73, 83-89 (2004).
    Peng Y. and L.T. Fan, 'Hydrodynamic Characteristics of Fluidization in
    Liquid-Solid Tapered Beds,' Chemical Engineering Science 52(14), 2277-2290
    (1997).
    Qiu, O., H. Li and H. Tong, 'Effect of fluid vicosity on liquid-solid fluidization.'
    Ind. Eng. Chem. Res. 43, 4434-4437 (2004).
    Richardson, J. F. and W. N. Zaki, 'Sedimentation and Fluidization. Part I,'
    Transactions of the Institution of Chemical Engineers 32, 35-53 (1954).
    Shi, Y. F., Y. S. Yu and L. T. Fan, 'Incipient fluidization Condition for a Tapered
    Fluidized Bed,' Ind. Eng. Chem. Fundam. 23, 464-489 (1984)
    Singh, A., R. Verma, K. Kishore and N. Verma, ' Multi-Stage Fluidized Bed
    Column : Hydrodynamic Study,' Chemical Engineering and Processing 47(5),
    957-970 (2008).
    Tatemoto, Y., Y. Mawatari, S. Okazaki and K. Noda, 'Separation of Solid
    Particles by Density Difference in a Liquid-Solid Fluidized Bed,' Journal of
    Chemical Engineering of Japan 38(4), 264-270 (2005).
    Tokuyama, H., M. Natsume, S. Nii, F. Kawaozumi and K. Takahashi, ' Factors
    Affecting Stable Operation of Countercurrent Multistage Fluidized Bed of
    Solid-Liquid System-Dimensions of Downspout,' The Canadian Journal of Chemical
    Engineering 82, 243-248 (2004).
    Tokuyama, H., M. Natsume, S. Nii, F. Kawaozumi and K. Takahashi, ' Role of
    Pressure Drop in the Countercurrent Multistage Fluidized Bed of Solid-Liquid
    System-Effect of Non-Uniform Liquid Flow,' Journal of Chemical Engineering of
    Japan 36(1), 98-104 (2003).
    Varma, Y.B.G., 'Pressure Drop of the Fluid and the Flow Patterns of the Phases
    in Multistage Fluidisation,' Powder Technology 12, 167-174 (1975).
    Verma, R., G. Srivastava, and N. Verma, 'Novel Multi-Staged Radially
    Cross-Flow Fluidized Bed Ion-Exchange Column,' Chemical Engineering and
    Processing 48(1), 396-407 (2009).
    Webster, G. H. and J. J. Perona, 'Liquid Mixing in a Tapered Fluidized Bed,'
    AIChE Journal 34(8), 1398-1402 (1988).
    Webster, G. H. and J. J. Perona, 'The Effect of Taper Angle on the
    Hydrodynamics of a Tapered Liquid-Solid Fluidized Bed,' AIChE Symposium
    Series-Advance in Fluidization Engineering 86(276), 104-112 (1990).
    Weiss, D. E. 'Method of and Apparatus for Obtaining Continuous
    Countercurrent Contact between Solid Particle and a Liquid,' US 1956 / 2765913
    (1956).
    Wen, C. Y. and Y. H. Yu, 'Mechanics of Fluidization,' Chemical Engineering
    Progress, Symposium Series 62(62), 100-111 (1966).
    Wilhelm, R. H. and M. Kwauk, 'Fluidization of solid particles,' Chemical
    Engineering Progress 44( 3), 201-18 (1948).
    Xia, S. and J. Zhu, 'Study on Liquid-Phase Axial Dispersion in Converging
    Taper Liquid-Solid Fluidized Beds,' Chinese J. of Chem. Eng. 8(2), 134-139 (2000).
    Zhang, F. and X. Zheng, 'Polydisperse Behavior of a Leached Uranium Ore in a
    Fluidized Classifying and Washing Column,' Fluidization, Science and Technology :
    Conference Papers, China-Japan Symposium, 191-202 (1982).
    李弘源, '去除海砂鹽分之方法,' 中華民國發明專利 / 089121372 (2000).
    許錫堆, '去除有害離子洗滌海砂(河砂)的方法,' 中華民國發明專利 /
    090100067 (2001).
    王天送, '日本海砂除鹽技術與用料,' 工業材料 91, 69-77 (1994).
    王天送, '台灣地區海底砂石與農地砂開發利用之探討,' 台灣礦業 45(3),
    235-249 (1993).
    王天送, '台灣地區海砂除鹽實驗研究,' 土木水利 23(1), 3-17 (1996).
    王天送, 翁祖炘與王文生, '海砂開採與除鹽技術及混凝土凝土鹼-矽反應觀
    念之簡介,' 土木技術 3(8), 122-148 (2000).
    鄭文哲, '台灣南部海域砂石資源開發可行性之先期評估,' 工研院能資所
    (1998)
    蕭幸國, '海砂除鹽之探討,' 礦業技術, 35-40 (1992).
    駱承利, '台灣北部海域砂石潛能區先期環境資料及資源圖之建立(頭前溪至
    後龍溪外海), ' 工研院能資所, (1998).
    蘇南與郭旭, '攪拌水洗法去除海砂氯離子之實驗分析,' 建築學報 (16),
    13-35 (1996).
    朱福盛, '多段雙向流多孔板式懸浮床之研究, ' 碩士論文, 國立台灣大學
    (2002)
    朱曉萍, '雙向流多孔板式懸浮床形成機制及穩定操作之研究,' 博士論文,
    68
    國立台灣大學 (2003)
    吳宗恆, '多孔板式懸浮床之研究,' 碩士論文, 國立台灣大學 (2001).
    吳覺宇, '海砂屋事件之省思,' 工業材料 90, 21-26 (1994).
    金冶生, '無溢流管多孔板式多鍛流體化床之流體化特性,' 碩士論文, 國立
    台灣大學 (1984).
    蔡槐庭, '不具溢流管多孔板式多段流體化床之穩定性的研究,' 碩士論文,
    國立台灣大學 (1986)
    王輝朋, '截頭錐狀液固流體化床之混和與分散的研究,' 碩士論文, 國立台
    灣大學 (1999).
    郭慕孫,李洪鐘主編, '流態化手冊,' 化學工業出版社 (2008).
    臺灣礦業史 續三册編纂委員會主編, '臺灣鑛業史- 續三-自民國八十八年
    至民國九十七年,' (2008).
    關鍵字(中)
  • 錐形段
  • 逆流式多階流體化床
  • 固液比
  • 液固流體化床
  • 外部溢流管
  • 海砂除鹽
  • 掃流流體化現象
  • 關鍵字(英)
  • desalination
  • sea sand
  • liqid solid fluidized bed
  • countercurrent multistage fluidized bed
  • external downcomer
  • cross-flow fluidization
  • 摘要(中) 因近年來建設遽增,砂石需求量也大幅增加,但河川砂石的蘊藏量日
    竭,而且盜採問題層出不窮,危及環境與公共安全。有鑑於日本及英國等
    國開發利用海砂之成功經驗及台灣優渥的地理環境,若能去除海砂中之鹽
    分,擬定正確使用對策,則可解決部分砂石來源。
    本研究利用含錐形段之逆流式多階流體化床浸取及洗滌海砂,藉著錐
    形段之廣粒徑範圍的操作特性,以及逆流式多階流體化床之優點來去除海
    砂中的鹽分,使其符合CNS1240中華民國國家標準,並達到節省水量、縮
    短清洗時間、縮小系統體積以及連續操作獲得高處理量的目標。
    研究結果顯示,逆流式多階流體化床的穩定操作條件參數有一定的範
    圍,若不在穩定範圍內,則會發生液體氾濫(Flooding)或是固體堵塞(Choking)
    的現象,導致操作中斷。系統的穩定操作範圍,隨著液體進口流量及固體
    進料流率的增加而縮小,隨階數的增加而變廣,在操作的過程中發現,因
    為溢流管的設置而產生特殊的流體化現象,使粒子有明顯的橫向移動,與
    學者Singh A. et al.(2008)所提出之掃流流體化現象(cross-flow fluidization)相
    符合。
    除鹽實驗方面,利用逆流式多階流體化床裝置去除海砂中的鹽分,於
    二階床操作時可達固液比範圍為0.55~1.4之間,三階床操作時,其固液比
    範圍為1.29~3.23,已經達到每1m3的海砂其處理水量為0.5公噸之相同比
    例,同時,固液比為3.23,操作時間約為2 分鐘之操作為最適化的操作條
    件,且海砂殘餘含鹽量可降至0.0348%,除鹽率高達88%,頗具實用價值。
    摘要(英) Because the recent years developed rapidly, the sand and crushed stone
    demand also largely increases. But the river sand and crushed stone reserves
    date uses up, moreover the robber picks the question to emerge one after another
    incessantly, endangers the environment and the public security. Base on the
    successful experience of Japan and British in developing and using sea sand and
    Taiwan liberal geographical environment, if can remove salt content in the sea
    sand and draws up the correct using countermeasure, then may solve the partial
    sand and crushed stone origin.
    This study use countercurrent multistage fluidized bed which contains the
    cone-shape section for leaching and washing sea sand. To take advantage of the
    characteristic of broad particle size distribution in cone-shape section and the
    virtues of countercurrent multistage fluidized bed to desalt in sea sand and make
    its salt content to conform the CNS national standards. The target in this study
    achieves saving water, volume, reducing cleaning time as well as the
    continuous-running to obtain the high process load.
    The experimental results show that the stable operation region in
    countercurrent multistage fluidized bed has a fixed range. The stable operation
    region in the system decreases with increasing liquid flow rate and solid feeding
    flow rate and increases with increasing the number of stages. In the process, the
    special phenomenon as a result of the downcomer. The solid flow move across
    the stage from the location of the downcomer on the cone-shape section to the
    location of the downcomer on the column section, resulting in the cross-flow
    fluidization. In the experiment of desalination in sea sand by countercurrent
    multistage fluidized bed. The solid feeding flow rate over the liquid inlet flow
    rate in two stages operation can achieve between 0.55 to 1.4 and it can achieve
    3.23 in three stages operation. It already achieves the experts’ expectation which
    is each 1m3 sea sand its processing water volume is 0.5 metric ton.
    指導教授
  • 錢建嵩 Chien-Song
  • 繳交日期 2009-08-21


    回論文系統首頁