博碩士論文 etd-0908110-154911 詳細資訊


論文電子檔
  • 9762029.pdf
  • 本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
    請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
    電子檔上網權限 校內5年後、校外永不公開
    統計 本論文已被瀏覽 1292 次,被下載 0 次
    中文姓名 吳哲睿
    英文姓名 Jhe-Ruei Wu
    電子信箱 不公開
    系所名稱(中) 物理研究所
    系所名稱(英) Physics
    學年度 98
    學期 2
    學位(中) 碩士
    學位(英) Master
    論文種類 碩士論文
    論文語文別 中文
    論文名稱(中) 以聚苯胺/銀奈米複合材料與苯胺寡聚物為有機發光二極體之電洞注入層的探討
    論文名稱(英) A study on organic light-emitting diodes with polyaniline/silver nanocomposite and oligomer of aniline as a hole injection layer
    頁數 56
    論文目次 中文摘要……………………………………………………………….………… I
    英文摘要…………………………………………………………………………. II
    誌謝…………………………………………………………………..................... III
    目錄……….…………….….…….………………...………….…….…………… IV
    圖目錄…………………………………………………………………………......VI
    表目錄…………………………………………………………………………..... VIII
    第一章 簡介………….……………………………………………….................. 1
    1.1 前言…………………....……………………………………..…………… 1
    1.2 有機電致螢光概述…....……………………………………..…………… 2
    1.3 有機發光二極體原理....……………………………………..…………… 4
    1.4 OLED元件電流限制....……………………………………..…………… 8
    1.5 ITO陽極表面改質……………………………………………………….. 11
    第二章 實驗原理與方法….…………………………………………………….. 12
    2.1 物理汽相沉積法概述...………………………………..…………………. 12
    2.2 旋轉塗佈法概述………………………………………..………………… 12
    2.3 聚苯胺/銀粉末製備……………………………………………………… 13
    2.4 聚苯胺/銀粉末條件參數的定義……………………………………….... 13
    2.5 實驗裝置與樣品製備…………………………………………………..… 14
    2.6 J-V與EL-V量測…………………………………………………………. 20
    2.7 光穿透頻譜量測……………………………………………………….…. 22
    第三章 結果與討論………………………………………..….………………… 24
    3.1 電流密度對電壓與光度對電壓作圖之分析…………………………….. 24
    3.2 電洞注入層之表面形貌分析…………………………………………...... 32
    3.3 XRD之結果分析…………………...……………..……………………... 40
    3.4 光穿透頻譜分析......…………………………………………………..…. 42
    第四章 結論與未來展望……………………………………………………..… 44
    參考文獻…………………………….……………………………….….……....... 46





    圖目錄
    圖 1.1 2006-2016 OLED 面板出貨金額預測(單位:百萬美元)。................. 3
    圖1.2 (a) Anthracene分子結構圖,(b) 芳香雙胺化物 (Aromatic diamine) 結構
    圖,(c) Alq3 之結構圖,(d) 柯達公司所發明之雙層異質結構的有機薄膜
    元件示意圖。.............................................................................................. 5
    圖1.3.1 OLED雙層結構發光原理示意圖。....................................................... 6
    圖1.3.2 OLED發光機制的兩種類型。............................................................... 7
    圖1.4 (a) Richardson-Schottky熱注入理論模型,(b) Fowler-Nordheim穿隧理論
    模型。......................................................................................................... 10
    圖2.5.1 (a) 蒸鍍腔體內部構造示意圖,(b) 放置ITO玻璃基板之基座示意圖。
    (1) 基座放置凹槽;(2) MASK旋轉盤;(3) 基板端大擋板;(4) 粉末端
    小擋板;(5) 坩鍋;(6) 加熱絲。......................................................... 17
    圖2.5.2 本實驗之元件架構圖。......................................................................... 18
    圖2.5.3 (a) Alq3分子結構圖,(b) NPB分子結構圖,(c) Oligomer分子結構圖。
    ………………………………………………………………………… 19
    圖2.6 J-V與EL-V量測系統架構圖。............................................................... 21
    圖2.7 光穿透量測系統架構圖。…………………………………………….... 23
    圖3.1.1 Conventional元件之 (a) J-V 與 (b) EL-V Semi-log作圖。…….... 25
    圖3.1.2 Ag (0%) 元件之 (a) J-V 與 (b) EL-V Semi-log作圖。………….. 26
    圖3.1.3 Ag (6%) 元件之 (a) J-V 與 (b) EL-V Semi-log作圖。…………. 27
    圖3.1.4 Ag (12%) 元件之 (a) J-V 與 (b) EL-V Semi-log作圖。……....... 28
    圖3.1.5 Oligomer元件之 (a) J-V 與 (b) EL-V Semi-log作圖。…………. 29
    圖3.1.6 五種元件數據合併之 (a) J-V 與 (b) EL-V 作圖。………………... 30
    圖3.1.7 五種元件數據合併之 (a) J-V 與 (b) EL-V Semi-log作圖。……. 31
    圖3.2.1 五種不同樣品之SEM俯視圖分別為:(a) 無塗佈之ITO,(b) Ag (0%),
    (c) Ag (6%),(d) Ag (12%),(e) Oligomer樣品1,(f) Oligomer樣品2。
    (附註:(a) 之比例尺為50 nm,(b)-(e) 之比例尺為200 nm,(f) 之比
    例尺為500 nm。)………………………………………………….. 35
    圖3.2.2 五種不同樣品之AFM圖分別為:(a) ITO,(b) Ag (0%),(c) Ag (6%),
    (d) Ag (12%),(e) Oligomer。…………………………………......... 36
    圖3.2.3 Ag (0%)、Ag (6%) 及Ag (12%) 之SEM側視圖:(a) Ag (0%) 樣品1,
    (b) Ag (0%) 樣品2,(c) Ag (6%) 樣品1,(d) Ag (6%) 樣品2,(e) Ag
    (12%) 樣品1,(f) Ag (12%) 樣品2。……………………………… 37
    圖3.2.4 (a) SEM側視圖出現異常白色光團 (比例尺500 nm),(b) SEM側視圖
    出現異常白色光團 (比例尺 1 μm),(c) Oligomer之SEM側視圖。
    ……………………………………………………………………….. 39
    圖3.3 PANI摻雜硝酸銀6% 與12% 之較高轉速與較低轉速的XRD頻譜圖。
    ………………………………………………………………………….. 41
    圖3.4 光穿透頻譜(波長範圍500-570 nm)。……………………………… 43


    表目錄
    表一 SEM俯視圖之區塊與團簇的表面覆蓋率。……................................... 38
    表二 由AFM所得之表面粗糙度。……………………………………….… 38
    表三 由SEM所得之兩個樣品的ITO與HIL平均薄膜厚度。…………… 38
    參考文獻 [1] DisplaySearch, Sep. 2009. DisplaySearch Q3’09 Quarterly OLED Shipment and
    Forecast Report, Taipei, DisplaySearch Ltd.

    [2] M. Pope, H. P. Kallmann, P. Magnante, Electroluminescence in Organic
    Crystals, J. Chem. Phys. 38 (1963) 2042.

    [3] W. Helfrich, W. G. Schneider, Recombination Radiation in Anthracene
    Crystals, Phys. Rev. Lett. 14 (1965) 229.

    [4] P. S. Vincett, W. A. Barlow, R. A. Hann, G. G. Roberts, Electrical
    conduction and low voltage blue electroluminescence in vacuum-deposited
    organic films, Thin Solid Films 94 (1982) 171.

    [5] C. W. Tang, S. A. VanSlyke, Organic electroluminescent diodes, Appl. Phys.
    Lett. 51 (1987) 913.

    [6] C. W. Tang, S. A. VanSlyke, C. H. Chen, Electroluminescence of doped
    organic thin films, J. Appl. Phys. 65 (1989) 3610.

    [7] 陳金鑫、黃孝文著,OLED:Materials and Devices of Dream Displays
    夢幻顯示器:OLED材料與元件,台北:五南,2007,20頁。

    [8] W. Brüetting, S. Berleb, A. G. Mückl, Device physics of organic light-
    emitting diodes based on molecular materials, Org. Electron. 2 (2001) 1.

    [9] Z. Chiguvare, V. Dyakonov, Trap-limited hole mobility in semiconducting
    poly(3-hexylthiophene), Phys. Rev. B 70 (2004) 235207.

    [10] V. I. Arkhipov, E. V. Emelianova, Y. H. Tak, H. Bässler, Charge injection
    into light-emitting diodes: Theory and experiment, J. Appl. Phys. 84
    (1998) 848.

    [11] U. Wolf, V. I. Arkhipov, H. Bässler, Current injection from a metal to a
    disordered hopping system. I. Monte Carlo simulation, Phys. Rev. B 59
    (1999)7507.

    [12] P. N. Murgatroyd, Theory of space-charge-limited current enhanced by
    Frenkel effect, J. Phys. D: Appl. Phys. 3 (1970) 151.

    [13] S. A. Van Slyke, C. H. Chen, C. W. Tang, Organic electroluminescent
    devices with improved stability, Appl. Phys. Lett. 69 (1996) 2160.

    [14] Y. Yang, E. Westerweele, C. Zhang, P. Smith, A. J. Heeger, Enhanced
    performance of polymer light-emitting diodes using high-surface area
    polyaniline network electrodes, J. Appl. Phys. 77 (1995) 694.

    [15] C. M. Hsu, C. L. Tsai, W. T. Wu, Selective light emission from flexible
    organic light-emitting devices using a dot-nickel embedded indium tin
    oxide anode, Appl. Phys. Lett. 88 (2006) 083515.

    [16] L. Y. Yang, X. Z. Chen, H. Xu, D. Q. Ye, H. Tian, S. G. Yin, Surface
    modification of indium tin oxide anode with self-assembled monolayer
    modified Ag film for improved OLED device characteristics, Appl. Surf.
    Sci. 254 (2008) 5055.

    [17] S. H. Kim, J. Jang, J. Y. Lee, Relationship between indium tin oxide
    surface treatment and hole injection in C60 modified devices, Appl. Phys.
    Lett. 89 (2006) 253501.

    [18] S. H. Kim, J. Jang, J. H. Yoon, J. Y. Lee, High-Efficiency Blue Organic
    Light-Emitting Diodes Using C60 as a Surface Modifier on Indium Tin Oxide,
    Electrochem. Solid-State Lett. 10 (2007) K39.

    [19] H. Y. Yu, X. D. Feng, D. Grozea, Z. H. Lu, R. N. S. Sodhi, A-M. Hor,
    H.Aziz, Surface electronic structure of plasma-treated indium tin oxides,
    Appl. Phys. Lett. 78 (2001) 2595.

    [20] Y. J. Lee, J. H. Kim, J. N. Jang, I. H. Yang, S. N. Kwon, M. P. Hong,
    D. C. Kim, K. S. Oh, S. J. Yoo, B. J. Lee, W. G. Jang, Development of
    inverted OLED with top ITO anode by plasma damage-free sputtering, Thin
    Solid Films 517 (2009) 4019.

    [21] 駱英梓,基板溫度變化下之 Alq3 薄膜特性分析,中原大學應物所碩士論文,2004,10-13頁。

    [22] 蘇志豐,不同厚度的碳六十薄膜之光穿透特性,中原大學應物所碩士論文,2007,19頁。

    [23] M. Fujihira, L. M. Do, A. Koike, E. M. Han, Growth of dark spots by
    interdiffusion across organic layers in organic electroluminescent
    devices, Appl. Phys. Lett. 68 (1996) 1787.

    [24] K. M. Kim, B. J. Jang, W. S. Cho, S. H. Ju, The property of encapsulation
    using thin film multi layer for application to organic light emitting
    device, Current Applied Physics 5 (2005) 64.

    [25] S. F. Chen, C. W. Wang, Influence of the hole injection layer on the
    luminescent performance of organic light-emitting diodes, Appl. Phys.
    Lett. 85 (2004) 765.

    [26] J. Jang, J. Ha, K. Kim, Organic light-emitting diode with polyaniline-poly
    (styrene sulfonate) as a hole injection layer, Thin Solid Films 516 (2008)
    3152.

    [27] J. Ouyang, C.W. Chu, F. C. Chen, Q. Xu, Y. Yang, High-conductivity poly
    (3,4-Ethylenedioxythiophene):ploy(styrene sulfonate) film and its
    application in polymer optoelectronic devices, Adv. Funct. Mater. 15
    (2005) 203.

    關鍵字(中)
  • 有機發光二極體
  • 表面改質
  • 苯胺寡聚物
  • 聚苯胺
  • 電洞注入層
  • 關鍵字(英)
  • Surface modification
  • OLED
  • Oligomer
  • PANI
  • HIL
  • 摘要(中) 本研究在有機發光二極體 (Organic light-emitting diode, OLED) 元件中,使用溶於NMP溶劑中的聚苯胺 (Polyaniline, PANI) 摻雜不同濃度之硝酸銀與苯胺寡聚物 (Oligomer of aniline) 共四種溶液旋轉塗佈於陽極上作為電洞注入層 (Hole injection layer, HIL)。由電流對電壓與光強度對電壓的量測結果可以得知PANI摻雜硝酸6% 與苯胺寡聚物兩種溶液旋轉塗佈於陽極上作為HIL,會使得元件整體效能有較大的提升,所以本研究利用下述量測方式來分析導致效能提升或降低(相較於沒有HIL之傳統結構元件)的機制為何。
    藉由掃描式電子顯微鏡 (SEM) 之俯視圖來分析各種HIL之表面形貌是否有助於電荷傳遞,並由側視圖可以得到HIL之膜厚。
    藉由原子力顯微鏡 (AFM) 來分析各種HIL之表面粗糙度來判斷哪種HIL 與電洞傳輸層 (Hole transport layer, HTL) 間有較好的接合面,同時好的接合面也意味著電洞由HIL注入到HTL有較好的注入效率,並使得元件整體效能提升。
    藉由X光粉晶繞射儀 (XRD) 來觀測PANI摻雜硝酸銀的粉末溶於NMP並利用旋轉塗佈於陽極上成膜後,薄膜中是否仍有奈米銀顆粒存在,以探討奈米銀顆粒對於電荷傳導機制的影響,進而影響到元件整體的效能。
    藉由光穿透頻譜來觀測經過HIL表面改質後之陽極透光率;因為透光率會直接影響到元件的光強度,從而影響到元件的發光效率。

    摘要(英) In this study, there are four solutions fabricated by polyaniline (PANI) doped with different concentration of silver nitrate and aniline of oligomer which are respective dissolved in the solvent of NMP. These solutions are spin-coat on the anode of organic light-emitting diode (OLED) as a hole injection layer (HIL). Through the results of measuring the current density versus voltage and the EL intensity versus voltage, it shows a significant increase of OLED device’s performance when the solutions of PANI doped with silver nitrate 6% and aniline of oligomer are spin-coated as a HIL. There are some measurements to analyze the mechanism of the OLED device’s performance is increasing or decreasing which are below this paragraph.
    Through scanning electron microscope (SEM) to analyzes the morphology of top view of the different HIL whether contribute to charge transport. And the thickness could be taken by the side view of the different HIL.
    Through atomic force microscopy (AFM) to analyzes the surface roughness of different HIL. Then we can discern which one of the HILs provided with the better contact of the interface between the HIL and hole transport layer (HTL). And the better contact of the interface implies that there is a hole injection from HIL to HTL has higher injection efficiency.
    Through X-ray diffraction to observe the powder of PANI doped with different concentration of silver nitrate dissolved in the solvent of NMP which spin-coating on the anode. To discuss whether the thin film on anode possess of nano-silver granule, then we may discuss the nano-silver granule whether play an important role in the charge transport mechanism.
    Through optical transmission to observe the transmissivity of the anode after surface modification. Because of the transmissivity will affect the light-emitting intensity immediately.

    指導教授
  • 邱寬城 Kuan-Cheng Chiu
  • 繳交日期 2010-09-08


    回論文系統首頁