博碩士論文 etd-0920110-105245 詳細資訊


論文電子檔
  • 9002505.pdf
  • 本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
    請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
    電子檔上網權限 校內1年後、校外永不公開
    統計 本論文已被瀏覽 1235 次,被下載 5 次
    中文姓名 張晉賢
    英文姓名 Chin-Hsien Chang
    電子信箱 不公開
    系所名稱(中) 生物醫學工程研究所
    系所名稱(英) Bio-Medical Engineering
    學年度 98
    學期 2
    學位(中) 博士
    學位(英) Ph.D.
    論文種類 博士論文
    論文語文別 中文
    論文名稱(中) 雷射誘發大鼠頸動脈血栓動物模式平台 之建立與評估
    論文名稱(英) Evaluate and establish an animal model of thrombosis in the carotid artery of rat induced by laser
    頁數 96
    論文目次 摘要..............................................................................................................I
    ABSTRACT.............................................................................................III
    誌謝.............................................................................................................V
    目錄..........................................................................................................VII
    圖索引.........................................................................................................X
    表索引....................................................................................................XIII
    第一章簡介..............................................................................................1
    1.1 心臟血管疾病之類....................................................................2
    1.2 血栓形成........................................................................................4
    1.3雷射誘導系統及其特性........................................................................6
    1.3.1 雷射器件及其特性.....................................................................6
    1.3.2 雷射於醫學與生物學之應用...................................................10
    1.4.ROSE BENGAL(孟加拉紅)介紹............................................................11
    1.4.1化學結構....................................................................................12
    1.4.2 Rose bengal吸收光譜...............................................................13
    1.5.EVANS BLUE 介紹.................................................................................13
    1.5.1 Evans blue化學結構.................................................................14
    1.5.2 Evans Blue吸收光譜.................................................................14
    1.6.光化學反應..........................................................................................15
    1.7.大白鼠頸動脈血栓模式之發展..........................................................18
    1.8納豆的介紹..........................................................................................19
    1.8.1 納豆萃取物...............................................................................19
    1.8.2 納豆激酶...................................................................................20
    1.9阿魏酸..................................................................................................21
    1.9.1 Ferulic acid 的來源...................................................................22
    1.9.2. Ferulic acid 的物理化學性質..................................................23
    1.9.3. Ferulic acid 之藥理作用與活性..............................................24
    1.10實驗目的............................................................................................26
    第二章實驗材料與方法........................................................................27
    2.1建立雷射誘發大白鼠頸動脈血栓之模式.........................................27
    2.2建立雷射誘發頸動脈血栓之平台.....................................................30
    2.3納豆萃取物(NATTO EXTRACT)及阿魏酸(FERULIC ACID)對大白鼠頸動脈血栓進行治療................................................................................33
    2.4雷射誘發大白鼠頸動脈血栓之效果.................................................34
    2.4.1 雷射誘發大白鼠頸動脈血栓模式參數之建立.......................34
    2.5抗血栓藥物抑制大白鼠頸動脈血栓形成之模式.............................36
    2.5.1建立雷射誘發大白鼠頸動脈血栓形成動物模式....................36
    2.5.2探討納豆激酶、納豆萃取物、阿魏酸對血管增生減緩效果之影響.....................................................................................................37
    2.6統計分析方法(STATISTICAL ANALYSIS)..............................................39
    第三章實驗結果......................................................................................40
    3.1雷射體系之建立..................................................................................40
    3.2實驗參數的建立..................................................................................45
    3.3雷射誘發大鼠頸動脈血栓動物實驗..................................................46
    第四章討論..............................................................................................56
    4.1雷射波長之選擇..................................................................................56
    4.2腦中風缺血型動物模式......................................................................57
    4.3雷射誘發大鼠頸動脈血栓動物實驗..................................................60
    第五章結論及未來展望..........................................................................63
    5.1結論......................................................................................................63
    5.2未來展望..............................................................................................64
    參考文獻....................................................................................................65
    相關發表....................................................................................................78

    圖索引
    圖-1動脈粥狀硬化的發展.........................................................................5
    圖-2 Rose bengal化學結構式…………………………………………...12
    圖-3 Rose bengal吸收光譜.......................................................................13
    圖-4 Evans blue化學結構.........................................................................14
    圖-5光化學反應過程(Photochemical Reaction Processes).....................15
    圖-6光敏感反應........................................................................................16
    圖-7實驗性血栓形成模式........................................................................17
    圖-8納豆激酶立體結構及其活性部位...................................................20
    圖-9 Ferulic acid化學結構式...................................................................23
    圖-10股靜脈插管......................................................................................28
    圖-11股靜脈插管注射染劑......................................................................28
    圖-12半導體激發式固態倍頻綠光雷射.................................................31
    圖-13雷射光源誘發位置示意圖.............................................................32
    圖-14雷射誘發大白鼠頸動脈血栓後投予納豆萃取物及阿魏酸.........34
    圖-15不同染料劑量、雷射功率與雷射誘發照射時間實驗流程.........35
    圖-16自測染劑Rose bengal 及 Evans blue吸收光譜..........................40
    圖-17雷射二極體激發固態綠光雷射及雷射二極體紅光雷射實體圖.41
    圖-18 (A)雷射二極體激發式固態綠光雷射波長532nm,(B) 雷射光點直徑固定至半高寬0.6mm接近大白鼠頸動脈直徑....................42
    圖-19自製雷射顯微觀測系統示意圖.....................................................43
    圖-20光譜儀測定綠光雷射波長532nm.................................................44
    圖-21半導體激發式固態倍頻綠光雷射532nm,固定功率10mW,照射大鼠頸動脈600秒,在Rose bengal 染劑劑量60 mg/kg下,不同時間點犧牲大鼠,以光學顯微鏡觀察其頸動脈血管管壁增生厚度(mm).................................................................................46
    圖-22半導體激發式固態倍頻綠光雷射532nm,固定功率10mW,照射大鼠頸動脈600秒,在Rose bengal 染劑劑量60 mg/kg下,,術後第28天,頸動脈冷凍切片,H&E染色觀察大鼠頸動脈管壁增生。 (A) control組,(B)納豆激酶餵食組-40mg/kg,(C)納豆萃取物餵食組-10ml/ kg...........................................……..47
    圖-23半導體激發式固態倍頻綠光雷射532nm,固定功率10mW,照射大鼠頸動脈600秒,在Rose bengal 染劑劑量60 mg/kg下,術後第28日,頸動脈冷凍切片,H&E染色,以光學顯微鏡觀察餵食納豆激酶組和納豆萃取物組,二者皆有減緩大鼠動脈血管管壁增生的作用...................................................................48
    圖-24半導體激發式固態倍頻綠光雷射532nm,固定功率10mW,照射大鼠頸動脈600秒,在Rose bengal 染劑劑量60 mg/kg下,術後第28日,頸動脈冷凍切片,以螢光染色,共軛焦顯微鏡觀察大鼠頸動脈管壁。(A) 內皮細胞,(B)平滑肌,(C)細胞核,(D)影像重疊…………………………………………………………49
    圖-25半導體激發式固態倍頻綠光雷射532nm,固定功率10mW,照射大鼠頸動脈600秒,在Rose bengal 染劑劑量60 mg/kg下,餵食納豆激酶 35日(術前7日及術後28日),術後第28日,頸動脈冷凍切片,螢光染色以共軛焦顯微鏡觀察大鼠頸動脈管壁增生。(A)內皮細胞(B)平滑肌(C)細胞核(D)影像重疊.........50
    圖-26半導體激發式固態倍頻綠光雷射532nm,固定功率10mW,照射大鼠頸動脈600秒,在Rose bengal 染劑劑量60 mg/kg下,餵食納豆萃取物 35日(術前7日及術後28日),術後第28日,頸動脈冷凍切片,螢光染色以共軛焦顯微鏡觀察大鼠頸動脈管壁增生(A)內皮細胞(B)平滑肌(C)細胞核(D)影像重疊.............51
    圖-27半導體激發式固態倍頻綠光雷射532nm,固定功率10mW,照射大鼠頸動脈600秒,在Rose bengal 染劑劑量60 mg/kg下,餵食阿魏酸(80mg/kg)35日(術前7日及術後28日),術後第28日,頸動脈冷凍切片,螢光染色以共軛焦顯微鏡觀察大鼠頸動脈管壁增生(A)內皮細胞(B)平滑肌(C)細胞核(D)影像重疊…………………………………………………………….…51
    圖-28 (A)正常大鼠頸動脈,H&E組織染色切片(B)半導體激發式固態倍頻綠光雷射532nm,固定功率10mW,照射大鼠頸動脈600秒,在Rose bengal 染劑劑量60 mg/kg下,術後第28日,頸動脈冷凍切片,H&E組織染色之頸動脈管壁增生………………..……………………………………………..…53
    圖-29半導體激發式固態倍頻綠光雷射532nm,固定功率10mW,照射大鼠頸動脈600秒,在Rose bengal 染劑劑量60 mg/kg下,術後第28日,頸動脈冷凍切片,(A) H&E染色,一般顯微鏡觀察,(B)免疫螢光染色,共軛焦顯微鏡觀察,大鼠頸動脈管壁增生…………………………..……………………………………..54
    圖-30 阿魏酸對光化學反應內皮細胞增厚的影響。半導體激發式固態倍頻綠光雷射532nm,固定功率10mW,照射大鼠頸動脈600秒,在Rose bengal 染劑劑量60 mg/kg下,術後第28日,頸動脈冷凍切片,H&E染色觀察大鼠頸動脈管壁增生。.........54
    表索引
    表- 1不同雷射體系與其典型參考數值....................................................9
    表- 2 抗原比較表......................................................................................38
    表- 3 不同參數引發大鼠頸動脈內皮細胞增生比較表.........................45
    表- 4過去文獻與本研究各項參數之比較..............................................59
    參考文獻 [1] Kulcsar, Z.; Marosfoi, M.; Berentei, Z.; Szikora, I., Continuous thrombolysis and repeated thrombectomy with the Penumbra System in a child with hemorrhagic sinus thrombosis: technical note. Acta Neurochir (Wien) 2010, 152, (5), 911-6.
    [2] Kawasaki, K.; Yano, K.; Sasaki, K.; Tawara, S.; Ikegaki, I.; Satoh, S.-I.; Ohtsuka, Y.; Yoshino, Y.; Kuriyama, H.; Asano, T.; Seto, M., Correspondence between neurological deficit, cerebral infarct size, and Rho-kinase activity in a rat cerebral thrombosis model. J Mol Neurosci 2009, 39, (1-2), 59-68.
    [3] Xu, F.; Previti, M. L.; Nieman, M. T.; Davis, J.; Schmaier, A. H.; Van Nostrand, W. E., AbetaPP/APLP2 family of Kunitz serine proteinase inhibitors regulate cerebral thrombosis. J Neurosci 2009, 29, (17), 5666-70.
    [4] Zabana, Y.; Domenech, E.; Garcia Castellanos, R.; Gassull, M. A., [Celiac disease and cerebral thrombosis.]. Med Clin (Barc) 2007, 129, (18), 718.
    [5] Xu, F.; Previti, M. L.; Van Nostrand, W. E., Increased severity of hemorrhage in transgenic mice expressing cerebral protease nexin-2/amyloid beta-protein precursor. Stroke 2007, 38, (9), 2598-601.
    [6] Lacigova, S.; Meinlova, J.; Gruberova, J., [The heart of a patient with type 1 diabetes]. Vnitr Lek 2010, 56, (5), 418-26.
    [7] Zizka, J.; Soucek, M., [Evaluation of cardiovascular high risk population in specialist ambulatory care: ESA]. Vnitr Lek 2010, 56, (5), 376-81.
    [8] Goonewardena, S. N.; Prevette, L. E.; Desai, A. A., Metabolomics and atherosclerosis. Curr Atheroscler Rep 2010, 12, (4), 267-72.
    [9] Pratt, C., Alternative prevention and treatment of cardiovascular disease, part 2. Prim Care 2010, 37, (2), 339-66.
    [10] Pratt, C., Alternative prevention and treatment of cardiovascular disease part 1. Prim Care 2010, 37, (2), 325-37.
    [11] [Atherosclerosis 2009. Prague, 9-11 September 2009]. Cas Lek Cesk 2009, 148, (11), 561-70.
    [12] Ekroos, K.; Janis, M.; Tarasov, K.; Hurme, R.; Laaksonen, R., Lipidomics: a tool for studies of atherosclerosis. Curr Atheroscler Rep 2010, 12, (4), 273-81.
    [13] Gasparyan, A. Y.; Stavropoulos-Kalinoglou, A.; Mikhailidis, D. P.; Toms, T. E.; Douglas, K. M. J.; Kitas, G. D., The rationale for comparative studies of accelerated atherosclerosis in rheumatic diseases. Curr Vasc Pharmacol 2010, 8, (4), 437-49.
    [14] Cipollone, F.; Toniato, E.; Martinotti, S.; Mezzetti, A., Genetic and molecular determinants of atherosclerotic plaque instability. Curr Vasc Pharmacol 2010, 8, (4), 545-52.
    [15] Fantidis, P., The role of the stress-related anti-inflammatory hormones ACTH and cortisol in atherosclerosis. Curr Vasc Pharmacol 2010, 8, (4), 517-25.
    [16] Chen, C.-H.; Hwang, R.-Z.; Huang, L.-S.; Lin, S.-M.; Chen, H.-C.; Yang, Y.-C.; Lin, Y.-T.; Yu, S.-A.; Lin, Y.-S.; Wang, Y.-H.; Chou, N.-K.; Lu, S.-S., A wireless bio-MEMS sensor for C-reactive protein detection based on nanomechanics. IEEE Trans Biomed Eng 2009, 56, (2), 462-70.
    [17] Martin, S. S.; Qasim, A.; Reilly, M. P., Leptin resistance: a possible interface of inflammation and metabolism in obesity-related cardiovascular disease. J Am Coll Cardiol 2008, 52, (15), 1201-10.
    [18] Gaini, S.; Pedersen, S. S.; Koldkaer, O. G.; Pedersen, C.; Moestrup, S. K.; Moller, H. J., New immunological serum markers in bacteraemia: anti-inflammatory soluble CD163, but not proinflammatory high mobility group-box 1 protein, is related to prognosis. Clin Exp Immunol 2008, 151, (3), 423-31.
    [19] Ray, K. K., Biomarkers, C-reactive proteins and statins in acute coronary syndromes. Fundam Clin Pharmacol 2007, 21 Suppl 2, 31-3.
    [20] Ramzy, D.; Rao, V.; Tumiati, L. C.; Xu, N.; Sheshgiri, R.; Jackman, J.; Delgado, D. H.; Ross, H. J., Endothelin-1 accentuates the proatherosclerotic effects associated with C-reactive protein. J Thorac Cardiovasc Surg 2007, 133, (5), 1137-46.
    [21] Kong, S.-y.; Li, Q.-f.; Yang, J.; He, L., [The effect of butylphthalide on expression of NGF and BDNF in ischemia stroke tissue of rat cerebrum]. Sichuan Da Xue Xue Bao Yi Xue Ban 38, (3), 400-3.
    [22] Soleman, S.; Yip, P.; Leasure, J. L.; Moon, L., Sustained sensorimotor impairments after endothelin-1 induced focal cerebral ischemia (stroke) in aged rats. Exp Neurol 2010, 222, (1), 13-24.
    [23] Liu, D.; Gharavi, R.; Pitta, M.; Gleichmann, M.; Mattson, M. P., Nicotinamide prevents NAD+ depletion and protects neurons against excitotoxicity and cerebral ischemia: NAD+ consumption by SIRT1 may endanger energetically compromised neurons. Neuromolecular Med 2009, 11, (1), 28-42.
    [24] Toda, N.; Ayajiki, K.; Okamura, T., Cerebral blood flow regulation by nitric oxide: recent advances. Pharmacol Rev 2009, 61, (1), 62-97.
    [25] Maeda, M.; Furuichi, Y.; Noto, T.; Matsuoka, N.; Mutoh, S.; Yoneda, Y., Tacrolimus (FK506) suppresses rt-PA-induced hemorrhagic transformation in a rat thrombotic ischemia stroke model. Brain Res 2009, 1254, 99-108.
    [26] Yang, W.; Sheng, H.; Homi, H. M.; Warner, D. S.; Paschen, W., Cerebral ischemia/stroke and small ubiquitin-like modifier (SUMO) conjugation--a new target for therapeutic intervention? J Neurochem 2008, 106, (3), 989-99.
    [27] Binning, M. J.; Khalessi, A. A.; Siddiqui, A. H.; Hopkins, L. N.; Levy, E. I., Stent placement for the treatment of a symptomatic intracranial arterial dissection in an adolescent. J Neurosurg Pediatrics 2010, 6, (2), 154-8.
    [28] Carod-Artal, F. J., Trypanosomiasis, cardiomyopathy and the risk of ischemic stroke. Expert Rev Cardiovasc Ther 2010, 8, (5), 717-28.
    [29] Berg, C.; Gembruch, O.; Gembruch, U.; Geipel, A., Doppler indices of the middle cerebral artery in fetuses with cardiac defects theoretically associated with impaired cerebral oxygen delivery in utero: is there a brain-sparing effect? Ultrasound Obstet Gynecol 2009, 34, (6), 666-72.
    [30] Liu, X.; Li, L.; Tian, W.; Zhao, C.; Dogra, V., Quantitative diffusion tensor imaging for evaluation of motor function in patients with brain infarcts. Acta Neurol Scand 2010, 121, (5), 315-9.
    [31] Crutch, S. J.; Warrington, E. K., Spatially coded semantic information about geographical terms. Neuropsychologia 2010, 48, (7), 2120-9.
    [32] Baek, E. B.; Jin, C.; Park, S. J.; Park, K. S.; Yoo, H. Y.; Jeon, J. H.; Earm, Y. E.; Kim, S. J., Differential recruitment of mechanisms for myogenic responses according to luminal pressure and arterial types. Pflugers Arch 2010, 460, (1), 19-29.
    [33] Lin, Y.-b.; Xia, Y.-l.; Gao, L.-j.; Chu, Z.-l.; Cong, P.-x.; Chang, D.; Yin, X.-m.; Zhang, S.-l.; Yang, D.-H.; Yang, Y.-Z., [Chronic outcome of patients with paroxysmal atrial fibrillation post catheter ablation]. Chung Hua Hsin Hsueh Kuan Ping Tsa Chih 2009, 37, (12), 1101-4.
    [34] Michaelides, C.; Nguyen, T. N.; Chiappa, K. H.; Kwolek, C. J.; Simon, M. V., Cerebral embolism during elective carotid endarterectomy treated with tissue plasminogen activator: utility of intraoperative EEG monitoring. Clin Neurol Neurosurg 2010, 112, (5), 446-9.
    [35] Yamaguchi, Y.; Kondo, T.; Ihara, M.; Kawamata, J.; Fukuyama, H.; Takahashi, R., [Intravenous recombinant tissue plasminogen activator in an 18-week pregnant woman with embolic stroke]. Rinsho Shinkeigaku 2010, 50, (5), 315-9.
    [36] Kawarada, O.; Yokoi, Y., Brain salvage for cardiac cerebral embolism following myocardial infarction. Catheter Cardiovasc Interv 2010, 75, (5), 679-83.
    [37] Bing, F.; Grand, S.; Lebas, J. F., [Syndrome of fat cerebral embolism]. Rev Neurol (Paris) 2009, 165 Spec No 4, F281-2.
    [38] Ghanem, A.; Muller, A.; Nahle, C. P.; Kocurek, J.; Werner, N.; Hammerstingl, C.; Schild, H. H.; Schwab, J. O.; Mellert, F.; Fimmers, R.; Nickenig, G.; Thomas, D., Risk and fate of cerebral embolism after transfemoral aortic valve implantation: a prospective pilot study with diffusion-weighted magnetic resonance imaging. J Am Coll Cardiol 2010, 55, (14), 1427-32.
    [39] Kwaan, H. C.; Samama, M. M., The significance of endothelial heterogeneity in thrombosis and hemostasis. Semin Thromb Hemost 2010, 36, (3), 286-300.
    [40] Tse, D.; Stan, R. V., Morphological heterogeneity of endothelium. Semin Thromb Hemost 2010, 36, (3), 236-45.
    [41] Yamada, T.; Watanabe, H.; Yano, T.; Nonaka, T.; Takada, A.; Sonoda, M.; Kubota, T.; Egashira, N.; Oishi, R., Timing of expression of blood coagulation abnormality in patients treated with warfarin and s-1 concomitantly. Yakugaku Zasshi 2010, 130, (7), 955-60.
    [42] Stahel, P. F.; Smith, W. R.; Moore, E. E., Current trends in resuscitation strategy for the multiply injured patient. Injury 2009, 40 Suppl 4, S27-35.
    [43] Meltzer, M. E.; Lisman, T.; de Groot, P. G.; Meijers, J. C. M.; le Cessie, S.; Doggen, C. J. M.; Rosendaal, F. R., Venous thrombosis risk associated with plasma hypofibrinolysis is explained by elevated plasma levels of TAFI and PAI-1. Blood 2010, 116, (1), 113-21.
    [44] Castelli, R.; Ferrari, B.; Cortelezzi, A.; Guariglia, A., Thromboembolic complications in malignant haematological disorders. Curr Vasc Pharmacol 2010, 8, (4), 482-94.
    [45] Al Laham, F.; Kalsch, A. I.; Heinrich, L.; Birck, R.; Kallenberg, C. G. M.; Heeringa, P.; Yard, B., Inhibition of neutrophil-mediated production of reactive oxygen species (ROS) by endothelial cells is not impaired in anti-neutrophil cytoplasmic autoantibodies (ANCA)-associated vasculitis patients. Clin Exp Immunol 2010, 161, (2), 268-75.
    [46] Puzanowska-Tarasiewicz, H.; Kuzmicka, L.; Tarasiewicz, M., [Organism defense against reactive oxygen species]. Wiad Lek 2009, 62, (4), 248-56.
    [47] Chen, J.-Y.; Lee, Y.-M.; Zhao, D.; Mak, N.-K.; Wong, R. N.-S.; Chan, W.-H.; Cheung, N.-H., Quantum dot-mediated photoproduction of reactive oxygen species for cancer cell annihilation. Photochem Photobiol 2010, 86, (2), 431-7.
    [48] Wang, S.; Xie, B.; Yin, L.; Duan, L.; Li, Z.; Eneji, A. E.; Tsuji, W.; Tsunekawa, A., Increased UV-B radiation affects the viability, reactive oxygen species accumulation and antioxidant enzyme activities in maize (Zea mays L.) pollen. Photochem Photobiol 2010, 86, (1), 110-6.
    [49] Criado, S.; Garcia, N. A., A comparative kinetic and mechanistic study between tetrahydrozoline and naphazoline toward photogenerated reactive oxygen species. Photochem Photobiol 2010, 86, (1), 23-30.
    [50] Erkekoglu, P.; Baydar, T., Effect of allyl isothiocyanate (AITC) in both nitrite- and nitrosamine-induced cell death, production of reactive oxygen species, and DNA damage by the single-cell gel electrophoresis (SCGE): does it have any protective effect on HepG2 cells? Int J Toxicol 2010, 29, (3), 305-12.
    [51] Wu, J.-G.; Xia, G.-Q.; Wu, Z.-M., Suppression of time delay signatures of chaotic output in a semiconductor laser with double optical feedback. Opt Express 2009, 17, (22), 20124-33.
    [52] Someya, H.; Oowada, I.; Okumura, H.; Kida, T.; Uchida, A., Synchronization of bandwidth-enhanced chaos in semiconductor lasers with optical feedback and injection. Opt Express 2009, 17, (22), 19536-43.
    [53] Blazek, M.; Elsasser, W.; Hopkinson, M.; Resneau, P.; Krakowski, M.; Rossetti, M.; Bardella, P.; Gioannini, M.; Montrosset, I., Coherence function control of Quantum Dot Superluminescent Light Emitting Diodes by frequency selective optical feedback. Opt Express 2009, 17, (16), 13365-72.
    [54] Oowada, I.; Ariizumi, H.; Li, M.; Yoshimori, S.; Uchida, A.; Yoshimura, K.; Davis, P., Synchronization by injection of common chaotic signal in semiconductor lasers with optical feedback. Opt Express 2009, 17, (12), 10025-34.
    [55] Ermakov, I. V.; Tronciu, V. Z.; Colet, P.; Mirasso, C. R., Controlling the unstable emission of a semiconductor laser subject to conventional optical feedback with a filtered feedback branch. Opt Express 2009, 17, (11), 8749-55.
    [56] Hugon, O.; Paun, I. A.; Ricard, C.; van der Sanden, B.; Lacot, E.; Jacquin, O.; Witomski, A., Cell imaging by coherent backscattering microscopy using frequency-shifted optical feedback in a microchip laser. Ultramicroscopy 2008, 108, (6), 523-8.
    [57] Zhang, J.; Wang, G.; Liu, Z.; Wang, L.; Zhang, G.; Zhang, X.; Wu, Y.; Fu, P.; Wu, Y., Growth and optical properties of a new nonlinear Na(3)La(9)O(3)(BO(3))(8) crystal. Opt Express 2010, 18, (1), 237-43.
    [58] Zhou, X.; Lau, L.; Lam, W. W. L.; Au, S. W. N.; Zheng, B., Nanoliter dispensing method by degassed poly(dimethylsiloxane) microchannels and its application in protein crystallization. Anal Chem 2007, 79, (13), 4924-30.
    [59] Yang, N.-l.; Zhang, S.-y.; Kuo, P.-k.; Qu, M.; Fang, J.-w.; Li, J.-h.; Hua, Z.-c., Photo-dissociation quantum yields of mammalian oxyhemoglobin investigated by a nanosecond laser technique. Biochem Biophys Res Commun 2007, 353, (4), 953-9.
    [60] Jeon, O.-Y.; Jin, M.-J.; Lim, H.-H.; Kim, B.-J.; Cha, M., Broadband optical parametric amplification at the communication band with periodically poled lithium niobate. Opt Express 2006, 14, (16), 7210-5.
    [61] Thorslund, S.; Klett, O.; Nikolajeff, F.; Markides, K.; Bergquist, J., A hybrid poly(dimethylsiloxane) microsystem for on-chip whole blood filtration optimized for steroid screening. Biomed Microdevices 2006, 8, (1), 73-9.
    [62] Tu, C.-y.; Li, J.-f.; Zhu, Z.-j.; Lin, J.-m., [The up-conversion of frequency in Yb3+ :KGd(WO4)2 material]. Guang Pu Xue Yu Guang Pu Fen Xi 2003, 23, (3), 438-40.
    [63] Mills, T. C.; Ott, R. A., Techniques for optimization of pulsatile ventricular assist device support. Artif Organs 1992, 16, (2), 218-21.
    [64] Wester, P.; Watson, B. D.; Prado, R.; Dietrich, W. D., A photothrombotic 'ring' model of rat stroke-in-evolution displaying putative penumbral inversion. Stroke 1995, 26, (3), 444-50.
    [65] Watson, B. D.; Dietrich, W. D., Animal models in stroke. Stroke 1990, 21, (9), 1376-7.
    [66] Futrell, N.; Watson, B. D.; Dietrich, W. D.; Prado, R.; Millikan, C.; Ginsberg, M. D., A new model of embolic stroke produced by photochemical injury to the carotid artery in the rat. Ann Neurol 1988, 23, (3), 251-7.
    [67] Lu W,Chen. Y,Xia, Z.& Fang,Z. Modified Evans blue fluorimetry for determination of pulmonary vascular permeability in rats sustaining burns, and delayed fluid resuscitation of burn shock. Burns 23,490-2(1997)
    [68] Keith, N.M.Rowntree,L.G..&Geraghty, J.T. A method for the determination of plasma and blood volume.Archives of Internal Medicine547-557(1915)
    [69] Nageswara R. Madamanchi; Aleksandr Vendr€ov; Marschall S. Runge Oxidative Stress and Vascular Disease ,Arteriosclerosis, Thrombosis, and Vascular Biology. 2005;25:29.
    [70] H. Du, R. A. Fuh, J. Li, A. Corkan, J. S. Lindsey, "PhotochemCAD: A computer-aided design and research tool in photochemistry," Photochemistry and Photobiology, 68, 141-142, 1998
    [71] M.d.C. Pazos and H.B. Nader. Effect of photodynamic therapy on the extracellular matrix and associated components. Braz J Med Biol Res 2007; 40: 1025-1035.
    [72] Bruce Furie and Barbara C.,Furie The Journal of Clinical Investigation J. Clin. Invest.Thrombus formation in vivo,115:3355–3362 (2005).
    [73] Rose bengal化學結構:commons. wikimedia.org/wiki/File: Rose Bengal.
    [74] Evans Blue化學結構:commons.wikimedia.org/wiki/File:Evans blue .png
    [75] 光化學反應過程:www.meta-synthesis.com/.../diradical.html
    [76] 郭奕玟。2009。以雷射誘導內皮細胞損傷及大鼠血管増生探討納豆激酶之功能。國立海洋大學食品科學系。基隆。台灣。
    [77] Ferulic acid. 化學結構式ommons. wikimedia. org/wiki /File: Ferulic acid
    [78] 楊國輝,黃宏彥,雷射原理與量測概論,五南圖書出版社,2001
    [79] 馬英俊。1980。雷射基本原理與應用。徐氏基金會。
    [80] 日本全國納豆協同組合聯合會。2004。納豆新世紀。青春出版社。
    [81] Sumi, H., Hamada, H., Nakanishi, k., Hiratani, H. 1990. Enhancement of the fibrinolytic activity in plasma by oral administration of Nattokinase I. Acta Haematologica. 84: 139-143.
    [82] Zheng, Z.L., Zhen Z.Y., Liu Z.G., Tsai K.C., Liu A.F., and Zou G.L. 2005. Construction of a 3D model of nattokinase, a novel fibrinolytic enzyme from Bacillus natto A novel nucleophilic catalytic mechanism for nattokinase. Journal of Molecular Graphics and Modelling. 23: 373-380.
    [83] Suzuki, Y., Kondo, K., Ichise, H., Tsukamoto, Y., Urano, T., and Umemura, K. 2003. Dietary supplementation by fermented soybean, natto, suppresses intimal thickening after endothelial injury in rat femoral artery. Nutrition. 19: 261-264.
    [84] Suzuki, Y., Kondo, K., Matsumoto, Y., Zhao, Q.B., Otsuguro, K., Maeda, T., Tsukamoto, Y., Urano, T., and Umemura, K. 2003. Dietary supplementation of fermented soybean, natto, suppresses intimal thickening and modulates the lysis of mural thrombi after endothelial injury in rat femoral artery. Life Science. 73: 1289-1298.
    [85] Azuma, K., Ichimura, K., Mita, T., Nakayama, S., Jin, W. L., Hirose, T., Fujitani,Y., Sumiyoshi, K., Shimada, K., Daida, H., Sakai, T., Mitsumata, M., Kawamori, R., Watada, H. 2009 . Presence of α-smooth muscle actin-positive endothelial cells in the luminal surface of adult aorta. Biochemical and Biophysical Research Communications 380:620–626
    [86] Ernst Graf, Antioxidant potential of ferulic acid, Free Radical Biology and Medicine, 28, 1249–1256, 2000
    [87] Jaroslaw Kanski, Marina Aksenova, Antonia Stoyanova, D. Allan Butterfield, Ferulic acid antioxidant protection against hydroxyl and peroxyl radical oxidation in synaptosomal and neuronal cell culture systems in vitro:structure–activity studies, Journal of Nutritional Biochemistry ,13 (2002) 273–281
    [88] Shiyi Ou, Kin-Chor Kwo, Ferulic acid: pharmaceutical functions, preparation and applications in foods, Journal of the Science of Food and Agriculture,Volume 84, Issue 11, pages 1261–1269, 30 August 2004
    [89] Marimuthu Srinivasan, Adluri R. Sudheer, and Venugopal P. Menon, Ferulic Acid: Therapeutic Potential Through Its Antioxidant Property, J Clin Biochem Nutr. 2007 March; 40(2): 92–100
    [90] Murakami, A., Nakamura, Y., Koshimizu, K., Takahashi, D.,Matsumata, K., Hagihara, K., Taniguchi, H., Noumura, E.,Hosoda, A., Tsuno, T., Maruta, Y., Kim, H.W., Kawabata, K.,and Ohigashi, H.: FA 15, a hydrophobic derivative of ferulic acid, suppresses inflammatory responses and skin tumor promotion: comparison with ferulic acid. Cancer Lett., 180,121-129, 2002.
    [91] Islam MS, Yoshida H, Matsuki N, Ono K, Nagasaka R, Ushio H, Guo Y, Hiramatsu T, Hosoya T, Murata T, Hori M, Ozaki H: Antioxidant, free radical-scavenging, and NF-kappaB-inhibitory activities of phytosteryl ferulates: structure-activity studies. J Pharmacol Sci 111: 328-337, 2009.
    [92] Ronchetti D, Borghi V, Gaitan G, Herrero JF, Impagnatiello F: NCX 2057, a novel NO-releasing derivative of ferulic acid, suppresses inflammatory and nociceptive responses in in vitro and in vivo models. Br J Pharmacol 158: 569-579, 2009.
    關鍵字(中)
  • 頸動脈血栓
  • 納豆萃取物
  • 阿魏酸
  • 雷射
  • 腦中風
  • 關鍵字(英)
  • Carotid Artery Thrombosis
  • Natto Extract
  • Ferulic Acid
  • Laser
  • Cerebral Stroke
  • 摘要(中) 根據衛生署統計,台灣地區十大死亡原因,腦中風高居第二位,佔全部死亡人數的18%左右。在缺血性腦中風研究上,多以建立大白鼠腦缺血動物模式進行探討,傳統方法有結紮法和栓塞法兩種,但由於困難度高或成功率低,在技術上有其限制。為了克服傳統腦缺血動物模式之不足,本研究之目的,希望建立一個雷射誘發大白鼠頸動脈血栓的平台,透過對光敏感染料劑量與雷射功率之控制,達到血栓生成,並以影像軟體進行分析血栓栓塞後頸動脈管壁厚度,作為調整參數之條件。在動物模式建立後,將以納豆萃取物(natto extract)及阿魏酸(Ferulic acid) 投予頸動脈血栓形成之大白鼠進行治療,來探討納豆萃取物(natto extract)及阿魏酸(Ferulic acid)對本動物模式之治療成效。
    本研究自行組裝出即時觀測並可分別控制雷射波長532 nm及650 nm的兩種雷射照射大白鼠顯微手術部位,可成功誘發大白鼠頸動脈內皮細胞增生之平台設備。以波長532 nm之DPSS Green Laser為誘發光源,搭配Rose bengal dye 60 mg/kg,照射600秒,四週後大白鼠頸動脈管壁明顯增生0.08 ± 0.02mm。而以波長650 nm之 Laser Diode為誘發光源,搭配Evans blue dye,嚐試多種條件組合均未引起大白鼠頸動脈內皮細胞增生。以納豆萃取物10ml/kg(natto extract)及阿魏酸80mg/kg(Ferulic acid)對大白鼠頸動脈血栓進行治療及成效評估,頸動脈切片以H&E染色顯微鏡及螢光染色共軛焦顯微鏡觀察及影像分析,結果發現確實可以減緩頸動脈管壁的增生。本研究經由光化學反應實驗參數之修正,提出適合相近於人類慢性血栓形成病理研究之雷射誘發頸動脈血栓之平台,確實結合學術工程技術與醫學臨床應用,以促進腦中風基礎研究的發展。


    摘要(英) According to the department of health, out of top ten leading causes of death, stroke has become the second leading cause of death, amounting to 18% of the total mortality rate in Taiwan. Traditional animal models for investigating mechanisms of ischemic stroke mostly take advantages of two different techniques: ligation- and embolism-induced ischemic stroke in rats. Although being widely used, their applications are limited due to technical challenges and low success rate. In order to avoid the technical pitfalls and limitations seen in the animal model, we developed a laser-based microplatform to induce carotid artery thrombosis in rats. Formation of thrombus can be achieved by administrating various amount of photosensizer dyes with simultaneous exposure to appropriated intensity of laser light sources. Coupling the microscopic image analysis which provides the information on vascular thickness of carotid artery, one can formulate critical parameters for desirable experimental outcomes. Once the animal model is developed, We will evaluate therapeutic effects on eliminating carotid artery thrombus induced in experimental animals by administering natto extract, an anti-thrombotic agent extracted from natto, and ferulic acid, an anticancer agent.

    We developed a real-time laser-based microplatform, equipped with two different laser intensities at wavelength of 532 nm and 650 nm, to induce carotid artery thrombosis in rats. Carotid artery thrombosis was induced by a simultaneous exposure to DPSS Green Laser at 532 nm wavelength with an injection of 60 mg/kg. Rose bengal dye. A significant increase in carotid artery proliferation by 0.08 ±0.02 mm thickness was observed 4 weeks after treatment in treated animals. In contrast, rats treated with various combinations of simultaneous exposures to Laser Diode at 650 nm wavelength with injections of Evans blue dye showed no significant increase in carotid artery proliferation. Furthermore, microscopic analysis of tissue sections taken from rats developed carotid artery thrombosis induced by formal treatment, using H&E staining microscopic and immunofluorescence confocal microscopic analyses, administration of 10ml/kg natto extract and 80 mg/kg ferulic acid to treated rats significantly decreased the proliferation. By altering the various experimental parameters, our long term goal of this investigation is to develop and establish a laser-induced carotid artery thrombosis animal model that closely resembles the underline mechanism of chronic thrombosis seen in stroke patients in clinic, a classic example of bridging both academic engineering and clinical applications in stroke research.


    指導教授
  • 張炎林 Yen-Lin Chang
  • 繳交日期 2010-09-20


    回論文系統首頁